Berezin-Toeplitz Quantization on the Schwartz Space of Bounded Symmetric Domains
نویسنده
چکیده
Borthwick, Lesniewski and Upmeier [“Nonperturbative deformation quantization of Cartan domains,” J. Funct. Anal. 113 (1993), 153–176] proved that on any bounded symmetric domain (Hermitian symmetric space of non-compact type), for any compactly supported smooth functions f and g , the product of the Toeplitz operators TfTg on the standard weighted Bergman spaces can be asymptotically expanded into a series of another Toeplitz operators multiplied by decreasing powers of the Wallach parameter ν . This is the Berezin-Toeplitz quantization. In this paper, we remove the hypothesis of compact support and show that their result can be extended to functions f , g in a certain algebra which contains both the space of all smooth functions whose derivatives of all orders are bounded and the Schwartz space. Applications to deformation quantization are also given. Subject classification: Primary 22E30; Secondary 43A85, 47B35, 53D55.
منابع مشابه
Toeplitz Quantization and Asymptotic Expansions for Real Bounded Symmetric Domains
An analogue of the star product, familiar from deformation quantization, is studied in the setting of real bounded symmetric domains. The analogue turns out to be a certain invariant operator, which one might call star restriction, from functions on the complexification of the domain into functions on the domain itself. In particular, we establish the usual (i.e. semiclassical) asymptotic expan...
متن کاملar X iv : m at h - ph / 0 61 10 82 v 1 2 9 N ov 2 00 6 A MATRIX - VALUED BEREZIN - TOEPLITZ QUANTIZATION
We generalize some earlier results on a Berezin-Toeplitz type of quantization on Hilbert spaces built over certain matrix domains. In the present, wider setting, the theory could be applied to systems possessing several kinematic and internal degrees of freedom. Our analysis leads to an identification of those observables, in this general context, which admit a semi-classical limit and those fo...
متن کاملToeplitz Operators on Symplectic Manifolds
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established. 0. Introduction Quant...
متن کاملWeighted Bergman Kernels and Quantization
Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...
متن کاملOn the Berezin - Toeplitz
I consider the problem of composing Berezin-Toeplitz operators on the Hilbert space of Gaussian square-integrable entire functions on complex n-space, C n. For several interesting algebras of functions on C n , we have T'T = T ' for all '; in the algebra, where T' is the Berezin-Toeplitz operator associated with ' and ' is a \twisted" associative product on the algebra of functions. On the othe...
متن کامل